ARL-TN-0806 e DEC 2016

ARL

US Army Research Laboratory

Voronoi-Based Nanocrystalline Generation
Algorithm for Atomistic Simulations

by Daniel Foley, Shawn P Coleman, Garritt Tucker, and Mark
A Tschopp

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the

Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorse-

ment or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TN-0806 e DEC 2016

ARL

US Army Research Laboratory

Voronoi-Based Nanocrystalline Generation
Algorithm for Atomistic Simulations

by Daniel Foley
Oak Ridge Institute for Science and Engineering (ORISE), Belcamp, MD

Shawn P Coleman and Mark A Tschopp

Weapons and Materials Research Directorate, ARL

Garritt Tucker
Drexel University, Philadelphia, PA

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE o A g

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
December 2016 Technical Note May 2015-August 2016
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Voronoi-Based Nanocrystalline Generation Algorithm for Atomistic Simulations

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Daniel Foley, Shawn P Coleman, Garritt Tucker, and Mark A Tschopp

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
US Army Research Laboratory NUMBER
ATTN: RDRL-WMM-F ARL-TN-0806

Aberdeen Proving Ground, MD 21005-5069

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Email: mark.a.tschopp.civ@mail.mil

14. ABSTRACT

The objective herein is to discuss an algorithm for generating nanocrystalline structures for use in molecular dynamics
simulations. This algorithm employs Voronoi tessellations to populate grains using atomic coordinates obtained from a set of
reference structures. To ensure a realistic grain morphology, a shell-based, geometric packing algorithm is used to assign grain
centers. Optimized placement of centers represents an improvement over traditional Voronoi methods that rely on random
placement by ensuring a consistent grain size and realistic grain geometry. Careful tracking of the grain centers and the atomic
structure within grains allows the user to rescale a previously built nanostructure, resulting in larger or smaller grains with
consistent grain morphology. This algorithm can be used to generate a wide variety of granular nanostructures including
nano-twinned metals, alloyed nanocrystals, and multiphase nanocrystals.

15. SUBJECT TERMS

US Army Research Laboratory, ARL, nanocrystalline materials; molecular dynamics; twinning; grain size

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
)) OF OF Mark A Tschopp
ABSTRACT PAGES
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
Unclassified Unclassified Unclassified uu 44 410-306-0855

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 7Z39.18

i

Contents

List of Figures

Acknowledgments

Introduction

Background
2.1 Voronoi Tessellation

2.2 Nearest-Neighbor Analysis

Methodology

3.1 Required Software

3.2 Single Mode (Generating from a LAMMPS Dump File)
3.2.1 Wrapping Periodic Bounds
3.2.2 Optimized Packing of Grain Centers
3.2.3 Generating and Scaling Reference Files
3.2.4 Populating Atoms

3.3 Config Mode: Generating from a Configuration File
3.3.1 Reading Grain Information

3.3.2 Repopulating Atoms

Usage
4.1 Invoking the User Interface

4.2 Output
Examples

Extensibility
6.1 Single Mode
6.2 Config Mode

Conclusions

Approved for public release; distribution is unlimited.

1l

Vi

N o oot M DD MW

00

1

13
13
13

14

8. References
Appendix. Python Script: nanocrystal_builder.py Function

Distribution List

Approved for public release; distribution is unlimited.

v

15

17

36

List of Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

A Voronoi diagram showing the tessellation for 25 randomly generated
centers of mass. The centers are blue circles. The blue lines are equal
distance to the 2 closest center points. The red triangles are vertices points
at equal distance to 3 CENter POINLS.euvueuiniiiiniiiieiienieeieaeneaenans 2

Images showing steps taken when generating nanocrystals (left to right):
populating cell with grain centers, sphere of atoms with defined crystal
structure centered at each grain center, identifying atoms belonging to
each grain center, removing overlapping atoms, and wrapping atoms
through periodic boundaries back into the simulation cell.................... 6

An example of the contents of a config file: the first line is a comment line
and is ignored by the algorithm, the second line contains information
about the grain size and the simulation cell size (listed as grain size (A),
Xomins Xmazs Ymins Ymazs Zmins and Z,,4..), and the remaining lines
contain the grain center ID, atomic Cartesian coordinates, rotation axis,
rotation angle (radians), and reference file...................c.oo 7

User feedback flow for Single Mode without texturing (top), and Config
Mode with texturing, rescaling, and reassigning (bottom).................. 12

Image demonstrating the outputs from the examples in Fig. 4. The
nanocrystalline structure on the left is generated from Single Mode, the
structure on the right is generated from Config Mode, where it has been
rescaled to 150% original size and 75% of the grains have been reassigned
tO hAVE EWINS. .ottt 13

Approved for public release; distribution is unlimited.

Acknowledgments

The authors would like to acknowledge funding from High Performance Computing
Modernization Program DOD Next Generation Workforce Development, HIP-15-
020 and HIP-16-005. This research was supported in part by an appointment to
the Graduate Research Participation Program at the US Army Research Laboratory
(ARL) administered by the Oak Ridge Institute for Science and Education through

an interagency agreement between the US Department of Energy and ARL.

Approved for public release; distribution is unlimited.

vi

1. Introduction

One of the major challenges facing researchers studying nanoscale systems is iden-
tifying the dynamic mechanisms controlling material properties and performance.
This is especially apparent in nanocrystalline metals where mechanical properties
are largely governed by atomic scale defects and interfaces between crystalline re-
gions. Molecular dynamics simulations provide researchers with a tool to accu-
rately simulate such small systems with atomic resolution, but these simulations
lack an efficient means of producing the complex structures associated with nano-
grained systems. These limitations mean that researchers must generate nanocrys-

talline structures manually with an external algorithm.

In this technical note, an algorithm (nanocrystal_builder.py) implemented in Python
is used to efficiently generate highly tailored nanocrystalline microstructures based
on user input. The Python script is attached as the Appendix and a description of its

capabilities and execution is described within this document.

2. Background

2.1 Voronoi Tessellation

The nanocrystalline builder algorithm is based on a Voronoi tessellation method that
implements packing rules to create optimal grain morphologies. Voronoi tessella-
tions, also called Voronoi diagrams, are powerful space-filling geometric structures
that have many applications in modern science. In this work, center of mass Voronoi
tessellations are used to construct 3-dimensional polyhedra, which define the limits
of individual grains in a polycrystal. In center of mass Voronoi tessellations, a set of
points, p, are defined as local sources of influence (centers of mass) for a spherical
field q. Individual points q; are assigned to centers of influence p, based on their
proximity. Voronoi regions are then defined as the collection of all points that are
assigned to a single region of influence. Figure 1 showcases a simple 2-dimensional
case with 25 centers of mass, where the Voronoi regions are bounded by the center

lines separating Voronoi centers.

Traditionally, Voronoi tessellation algorithms are initialized with either randomly
placed center of masses or centers packed using a regular grid; however, these are
not ideal for constructing nanocrystals. The disadvantage with implementing ran-

domly dispersed Voronoi tessellation algorithms for nanocrystalline construction is

Approved for public release; distribution is unlimited.

that if the Voronoi (grain) centers are not properly packed, the resulting structure
will likely be unrealistic. Purely random placement of centers can result in acute
grains and needle-like grain structures that are rarely, if ever, observed in physical
systems. Similarly, grid packing can result in highly cubic grains or idealized grains
that are equally unlikely. Therefore, in this work, a spherically optimized packing
routine was implemented to overcome the hurdles presented by these traditional

packing routines to create more realistic nanocrystalline starting structures.

Fig. 1 A Voronoi diagram showing the tessellation for 25 randomly generated centers of mass.
The centers are blue circles. The blue lines are equal distance to the 2 closest center points.
The red triangles are vertices points at equal distance to 3 center points.

2.2 Nearest-Neighbor Analysis

One obstacle to using Voronoi tessellations for creating atomic nanocrystalline
structures is the computationally inefficient process of testing for nearest neigh-
bors when assigning grain centers and populating/trimming atoms. The brute force
method loops over each point and repeatedly calculates the distances to all other
points (incorporating periodic boundaries) to define nearest neighbors. While this
method is easy to implement, such brute force methods waste computational re-
sources by running calculations on nonlocal points that could be ignored. It is
possible to include rules for ignoring points far away, which can help this brute

force approach to be slightly more efficient. However, since nanocrystal_builder.py

Approved for public release; distribution is unlimited.

generates potentially millions of data points (atoms), a more efficient method for
proximity testing was necessary. Typically, high (computational) efficiency nearest-
neighbor analysis is performed by breaking the data set down into a tiered data
structure that spatially sorts the atom coordinates into bins. This allows these high-
efficient algorithms to limit the number of points queried to just those belonging to
the same tier (or neighboring tiers) as the point of interest. An example of such a
data structure, the KDTree from SciPy stack in Python, is leveraged in this work to

improve the computational efficiency of the nearest-neighbor testing routines.

3. Methodology

The following sections provide a detailed description of how nanocrystal_builder.py
works. The source code has been broken apart into several subfunctions to help im-
prove readability and to establish a modular flow control. Each function in the code

has been designed to perform a specific set of tasks that will be described separately.

In general, there are 2 ways to construct nanocrystals with nanocrystal_builder.py.
The first method uses an optimized packing algorithm to generate a list of grain
centers that are populated with seeds—spherical groups of atoms extracted from a
reference file. This method uses a single reference file, and is therefore referred
to as Single Mode. The second method, referred to as Config Mode, uses data
from a configuration file to generate nanocrystalline structures thus providing addi-
tional control over the structure. Configuration files contain information pertaining
to the simulation cell size, average grain size, as well as the position, orientation
and reference data for each grain. Configuration files are automatically generated
by nanocrystal_builder.py as a standard output to ensure the resulting structure is
easily reproducible. Users can modify configuration files to obtain a high degree
of control over the resulting structure, allowing for the construction of networked

grains and rescaled grain sizes.

Approved for public release; distribution is unlimited.

3.1 Required Software

The nanocrystal_builder.py algorithm detailed in this document is written in Python
and makes use of the SciPy stack. Development and testing were performed using
Python 2.6.6 and the SciPy 0.15.0 with its associated libraries. These version num-
bers should be considered the minimum required for use. The standard output for
the atomic data generated by nanocrystal_builder.py is formatted to match the data
file format associated with the molecular dynamics code LAMMPS.!? Therefore,
structures can be read into LAMMPS using the read_data command (i.e.,

http://lammps.sandia.gov/doc/read_data.html).

3.2 Single Mode (Generating from a LAMMPS Dump File)

This section discusses the methods and code used to generate a nanocrystalline
structure with a single reference file for seed extraction. Some of the code segments
detailed here are also used in Config Mode as discussed in Section 3.3. It is recom-
mended that the reference structures used for Single Mode be of single crystalline
or bicrystalline nature as more complex structures may result in unrealistic struc-
tures. Additional care must be taken when using a bicrystalline reference structure
as the existence of a grain boundary within the seed effectively reduces the grain

size and may create potentially unrealistic nanocrystalline structures.

3.2.1 Wrapping Periodic Bounds

The nanocrystal_builder.py script accommodates user-defined periodic boundaries.
This task is performed by testing if a point, which can be an atom or a grain center,
is positioned beyond the upper and lower bounds of the simulation cell for each
dimension. If one of the boundaries is exceeded, the point is conditionally moved
by adding (or subtracting) a periodic length if the point lies outside of the lower
(or upper) bound. Performing this process in all 3 axes results in all points being

contained within the simulation cell.

3.2.2 Optimized Packing of Grain Centers

The nanocrystal_builder.py script uses Voronoi tessellations to form 3-dimensional,
grain-like structures. In this routine an initial center is placed at the corner of the
simulation cell lying on the origin. A cloud of allowed points is then defined at a
minimum and maximum radius around this center; these radii are defined to be 75%

and 125% of the requested grain size, respectively. The next grain center is chosen

Approved for public release; distribution is unlimited.

http://lammps.sandia.gov/doc/read_data.html

at random from these points and a new cloud of allowed points is defined such that
none of the new points fall within the minimum radius of any existing grain center.
This method is repeated until an iteration is reached in which the number of allowed
points becomes zero, thereby optimally filling the requested simulation cell size. To
account for periodic boundary conditions, “ghost” grain centers are placed in the
area outside the simulation cell which represent the reflections, across the periodic
bounds, of previously defined centers. This ensures that centers near the simulation
edge are not within the minimum radius of each other when wrapped around the

periodic boundaries.

3.2.3 Generating and Scaling Reference Files

The nanocrystal_builder.py script uses reference files constructed in the LAMMPS
dump file format. In the event that the reference file provided by the user is smaller
than the desired grain size, the nanocrystal_builder.py code enters into a dynamic
rescaling function. This function checks the dimensions of the reference file and
replicates the reference atoms across the periodic edge. This is repeated until all of
the reference file dimensions are at least 150% of the requested grain size. In Single
Mode this is done once and the newly replicated reference is held in memory until
the code exits. In Config Mode the reference structure for each grain is individually

rescaled and dropped from memory at the end of each iteration of the code.

3.2.4 Populating Atoms

The nanocrystal_builder.py script then populates each Voronoi grain with atoms
from the rescaled reference file. Figure 2 highlights the steps that are used. Images
generated using OVITO.? The first step in this process is to isolate a sphere of atoms
from the reference file. This is done by searching for all atoms within a cutoff radius
of the reference structure center point using a KDTree query. By default the sphere
of atoms is rotated randomly using the axis-angle method. However, if a texturing
axis has been specified, the rotation axis is fixed to the texturing axis. The rotated
sphere of atoms is then assigned to a grain center by placing the center point of the
sphere on the grain center. This process is repeated until all of the grain centers are

populated.

At this point, the structure is populated with overlapping spheres of atoms. These
spheres are trimmed according to the Voronoi tessellation of the simulation cell

(i.e., the boundaries between grains are defined by the midlines between grain cen-

Approved for public release; distribution is unlimited.

ters [see Fig. 1]). To determine if an atom lies within the boundaries of its parent
grain, KDTree queries are used to test if the nearest grain center to the atom is the
grain center it was assigned (its parent). If the atom is closest to a center that is not
its parent center, it is deleted. To account for the periodic edges “ghost” centers are
placed around the defined simulation cell. After overlapping atoms are removed,

the structure is wrapped across the periodic bounds to ensure that all atoms are

contained within the user-defined simulation cell as shown in Fig. 2.

Fig. 2 Images showing steps taken when generating nanocrystals (left to right): populating
cell with grain centers, sphere of atoms with defined crystal structure centered at each grain
center, identifying atoms belonging to each grain center, removing overlapping atoms, and
wrapping atoms through periodic boundaries back into the simulation cell

3.3 Config Mode: Generating from a Configuration File

The nanocrystal_builder.py script can also operate in Config Mode to generate
nanocrystalline structures. In this mode, the nanocrystalline structure is generated
using configuration files that contain the simulation cell dimensions, average grain
size, grain positions, grain orientations, and reference data. Config Mode enables
easy reproduction of previously built nanostructures and provides capabilities of
rapidly modifying existing nanostructures. For example, Config Mode allows the
user to automatically replace a percentage of the grain reference files, reorient
grains to add texturing, and to rescale the entire system. These options are enabled

using a series of questions posed to the user at the command prompt.

3.3.1 Reading Grain Information

The nanocrystal_builder.py script reads grain center information from a configura-
tion file, prompts the user for modifications, and then builds the structure according.
An example configuration file is shown in Fig. 3. The first line of the configuration
file is for user comments about the structure, which is ignored by the code. The sec-
ond line consists of 7 entries pertaining to the average grain size and simulation cell

limits, specifically grain size (A), Xomins Xmazs Ymins Ymazs Zmin, aNd Zpqe. The

Approved for public release; distribution is unlimited.

remaining lines contain information regarding individual grains in the following
order: grain number, center x, y, z coordinate, rotation-axis x, y, z index, rotation
angle, reference file. To improve efficiency, the grain data are stored as Python dic-

tionary objects.

#data Tor centroids

50.000000 0.000000 100.000000 0.000000 100.000000 0.000000 100.000000

0 25.000000 25.000000 25.000000 ©.577350 0.577350 0.577350 1.019442 out.crystcufix.txt
15.653842 14.213959 73.605896 0.577350 0.577350 0.577350 2.977697 out.twinlc.txt

10.845016 BO.767845 21.027548 9.577350 0.577350 0.577350 0.997454 out.twinlc.txt

35.462112 77.228439 75.485779 0.577350 0.577350 0.577350 1.959592 out.crystcufix.txt

72.080017 5.680593 99.983498 0.577350 0.577350 0.577350 2.679047 out.twinlc.txt

48.061413 66.311881 38.980812 0.577350 0.577350 0.577350 1.239753 out.crystcufix.txt

77.514809 2.187867 55.050816 0.577350 0.577350 0.577350 2.508741 out.twinlc.txt

77.514809 45.743797 67.839989 0.577350 0.577350 0.577350 1.0882618 out.crystcufix.txt

39.543736 37.302536 91.937027 0.577350 0.577350 0.577350 1.483817 out.crystcufix.txt

9 77.514809 45.743797 15.866305 0.577350 0.577350 0.577350 1.644024 out.twinlc.txt

16 90.813972 77.228439 83.444176 0.577350 0.577350 0.577350 1.879738 out.twinlc.txt

11 11.178849 49,.204056 51.654900 ©.577350 0.577350 ©.577350 1.983781 out.crystcufix.txt

00 =) O LN s L) R

Fig. 3 An example of the contents of a config file: the first line is a comment line and is ignored
by the algorithm, the second line contains information about the grain size and the simulation
cell size (listed as grain size (10&), Xmins Xmazs Ymins Ymazs Zmins and Z 4.), and the remaining
lines contain the grain center ID, atomic Cartesian coordinates, rotation axis, rotation angle
(radians), and reference file

3.3.2 Repopulating Atoms

In Config Mode, the nanocrystal_builder.py script populates atoms using the infor-
mation contained within the configuration file as well as any modifications specified
by the user in the command prompt. First, the nanocrystal_builder.py script assesses
any user-specified modifications. This starts by multiplying all lengths and center
coordinates by the user-specified rescale factor. Once the data have been rescaled
the code determines how many, if any, of the grains need to have their reference
file replaced to satisfy the user-specified secondary reference composition. Finally,
if the user has specified a texturing direction, the code will replace the rotation axis

indices for all entries with those requested by the user.

Once the grain center data have been read and processed, the atom population sub-
function commences in the same manner as Single Mode. However, as explained
earlier, while in Config Mode the code reads and rescales the reference file at each
step of the algorithm to accommodate the use of multiple references. This additional
processing means that Config Mode runs slower than Single Mode, which performs

the reference rescaling only once.

Approved for public release; distribution is unlimited.

4. Usage

The following sections describe how to invoke and interact with the nanocrys-
tal_builder.py script. These sections act as a general user guide to the nanocrys-

tal_builder.py script.

4.1 Invoking the User Interface

The nanocrystal_builder.py script is written as a Python run script and can therefore
be invoked through either a bash terminal or a Python interactive environment. Prior
to invoking the script, the user must change the present working directory to the
directory containing the nanocrystal_builder.py script. Once this is done the script
is invoked by entering python nanocrystal_builder.py in terminal or
import nanocrystal_builder.py in the Python interactive environment.

Once invoked, the algorithm begins querying the user for necessary information.

The nanocrystal_builder.py script relies on user interaction to establish key ini-
tialization parameters within the algorithm. This interaction takes place through a
series of simple text queries to the user within the run environment. The first query
“single or config?” sets the variable environment and determines what set of queries
the user is subsequently prompted to answer. This prompt only accepts user feed-
back of “single” or “config” (no quotes). Any other input will result in an error

prompting the user to enter a valid response.

Single Mode. If the user responds to the first query with “single” the following
prompts will be provided:

* “Input reference file path”:
The answer to this query tells the algorithm where the crystal reference file is
located. The script expects the user to return a valid file path.

* “Input desired grain size in angstroms””:
User should respond with the desired average grain size, in angstroms, for
their structure. Response should be an integer or float value.

* “Input desired box dimensions in angstroms.

Use the following convention (xlo xhi ylo yhi zlo zhi)”:

Approved for public release; distribution is unlimited.

The user should provide the desired simulation cell bounds. Individual values
should be in integer or float format with a single space in between values.

Note that no parenthesis should be present in the response.

* “Input crystalline texturing direction
Reply “none” (quotations excluded) if no texturing desired
Use following convention “index_x, index_y, index_z"":

If the user desires their structure to possess crystalline texturing, they should
respond to this query with the desired texturing direction using the Miller in-
dex convention. Individual indices should be integers with commas separat-
ing indices. If texturing is not desired, the user should respond with “none”

(no quotes).

This mode outputs a configuration file, which can be used to recreate and manipu-
late the structure through Config Mode, and a LAMMPS-style data file that contains

the atom types and positions.

Config Mode. If the user responds to the first query with “config” (no quotes) the

following prompts will be provided:

* “Input path of configuration file”:

The user should provide a valid path to a file containing the desired reference
data. Information on how this file is created and structured is provided in the

methods section.

* “Input a scaling factor (1 if no change desired, must be greater than 0)”:

This query is used to linearly rescale the reference file. Values larger than 1
will result in an increase in size while values less than one will result in a
decrease in size. A value of 1 will result in no change in size. User should

provide a response in either integer or float format.

» “Percent of grains to be reassigned (decimal from 0-1):

User will specify what percentage of the grains in their structure will have
their reference file replaced. Input should be a float between 0 and 1 corre-

sponding to the decimal form of the desired percentage.

Approved for public release; distribution is unlimited.

* “Input path of new reference file:

Conditional query, only requested if previous is non-zero. User must specify

a valid path to the desired secondary reference file.

* “Input crystalline texturing direction
Reply “none” (quotations excluded) if no texturing desired
Use following convention “index_x, index_y, index_z"":

If the user desires their structure to possess crystalline texturing, they should
respond to this query with the desired texturing direction using the Miller in-
dex convention. Individual indices should be integers with commas separat-
ing indices. If texturing is not desired, the user should respond with “none”

(no quotes).

Config Mode will produce a new configuration file containing all information perti-
nent to the newly created structure along with a LAMMPS-style data file containing

atom information.

Final Input and Runtime. Once the user has defined the algorithm-critical vari-
ables the final prompt asks the user for an output name. This output should be the
general name as the appropriate file extensions and flags are then automatically
added. At this point the algorithm executes and generates the nanocrystalline struc-
ture. At various stages during runtime the algorithm prints status messages to the
screen to verify its progress. Since default Python runtimes do not take advantage of
parallel computing, large structures can take some time to generate and may require
significant memory. In testing, structures containing up to 5 million atoms could be

generated with fewer than 4 GB of RAM (random access memory).

4.2 Output

Two files are output by the nanocrystal_builder.py script upon completion. The first
file is the structure configuration file. As previously detailed, this file contains in-
formation that can be used to reproduce and modify the structure while retaining
the overall grain morphology. This file will be named filename.config where file-
name 1is the user-specified base file name. The second file, named filename.data,
is a LAMMPS data file containing the ID, type, and position of all of the atoms

in the structure. By default, the atom types will be based on which grain the atom

Approved for public release; distribution is unlimited.

10

belongs to. The preamble in this file is standard to the LAMMPS data file format

and contains information about the simulation cell dimensions.

5. Examples

In this section, both Single Mode and Config Mode for generating nanoscale struc-
tures using nanocrystal_builder.py are demonstrated. Example command prompt
options for these modes are shown by the screen shot in Fig. 4. First, a 10-nm grain
structure is created in a 15- X 15- X 15-nm simulation cell. Here, each grain con-
tains an ideal face-centered cubic structure as described by the dump.Cu LAMMPS
file (that is located in the working directory). No texture direction is specified, thus
each grain has a random orientation. Assuming 100% packing efficiency, the algo-
rithm estimates that six 10-nm grains need to be created within the 15-nm cube;
however, the optimized spherical packing algorithm is only able to successfully
place 5 grain centers within the volume. After determining the grain center loca-
tions, the nanostructure is built and the resulting outputs are a LAMMPS data file

called data.Cu_NC and a configuration file saved as Cu_NC_centroids.config.

The nanocrystal_builder.py script is invoked a second time to demonstrate the Con-
fig Mode in the lower half of Fig. 4. Here, the Cu_NC_centroids.config file gen-
erated from the previous example is used to preserve the grain morphology (grain
center locations). However, in this example the simulation dimensions are rescaled
1.5 times to create approximately 15-nm grains. Using the command prompt, 75%
of the grains are randomly chosen to be reassigned to a secondary atomic struc-
ture. The secondary atomic structure, called dump.Cu_twin (located in the work-
ing directory), contains approximately 5-nm spaced Cu twins. Through command
prompt interaction, all grain orientations are reoriented about the [111] direction
to observe crystallographic texturing. As previously shown, the resulting outputs
from the nanocrystal_builder.py code are a structure and a configuration file. Both

structures created in this section are shown in Fig. 5.

Approved for public release; distribution is unlimited.

11

bash-4.1$ python nanocrystal_builder.py

Do you want to generate from a single reference or a
configuration file (respond single or config):

single

Input the reference file path:

/dump.Cu

Input desired grain size in angstroms:

100

Input the box dimensions in angstroms

Use the following convention lowerx, upperx, lowery,
uppery, lowerz, upperz:

0, 150, 0, 150, 0, 150

Input crystalline texturing direction

Reply "none" (quotations excluded) if no texturing desired
Use following convention index_x, index_y, index_z:
none

Input desired output basename:

Cu_NC

asigning grain centers

approximate number of grains = 6

asigning grain 1

asigning grain 2

asigning grain 3

asigning grain 4

asigning grain 5

populating atoms

populating grain 0

populating grain 1

populating grain 2

populating grain 3

populating grain 4

populating grain 5

trimming excess atoms

wrapping periodic bounds

outputting to data file

bash-4.1$ python nanocrystal_builder.py

Do you want to generate from a single reference or a
configuration file (respond single or config):

config

Input path of configuration file:
Cu_NC_centroids.config

Input a scaling factor (1 if no change desired, must be
greater than 0):

1.5

Percent of grains to be reassigned (decimal from 0-1):
0.75

Input path of new reference file:

J/dump.Cu_twin

Input crystalline texturing direction

Reply "none" (quotations excluded) if no texturing desired
Use following convention index_x,index_y,index_z:
1,11

Input desired output basename:
Cu_NC_1.5scale_0.75twin_111

reading configuration data

reassigning 4 reference files

populating atoms

populating grain 0

populating grain 1

populating grain 2

populating grain 3

populating grain 4

populating grain 5

trimming excess atoms

wrapping periodic bounds

outputting to data file

Fig. 4 User feedback flow for Single Mode without texturing (top), and Config Mode with
texturing, rescaling, and reassigning (bottom)

Approved for public release; distribution is unlimited.

12

Fig. 5 Image demonstrating the outputs from the examples in Fig. 4. The nanocrystalline
structure on the left is generated from Single Mode, the structure on the right is generated
from Config Mode, where it has been rescaled to 150% original size and 75% of the grains
have been reassigned to have twins.

6. Extensibility

6.1 Single Mode

In the current version, Single Mode allows control over grain size, simulation cell
size, and crystallographic texturing. These capabilities are well suited for producing
homogeneous structures with equiaxed grains but are not well suited for producing
grain size gradients or non-equiaxed grain shapes. It is possible to add these capa-
bilities by manipulating the centroid placement algorithm to use a gradient radius
function or an elliptical region of allowed space instead of the homogeneous spheri-
cal space. With the current distribution this extension should be considered as future

work.

6.2 Config Mode

The current version is configured to automatically use 2 separate reference files
when rebuilding a structure. This is very useful for adding twinned grains to an ex-
isting granular structure, as was the intention of this project. However, should the
user desire to produce a structure using additional reference files, they would have

to either manually manipulate the configuration file or run Config Mode multiple

Approved for public release; distribution is unlimited.

13

times. As both of these options are suboptimal for large structures or many refer-
ences, future versions of this algorithm can include capabilities to automatically

process structures with arbitrary numbers of reference files.

7. Conclusions

The nanocrystal_builder.py script was developed to generate nanocrystalline struc-
tures with flexibility to alter texture, reference structures, and grain sizes. The al-
gorithm uses an optimized packing routine to produce realistic grain shapes and
size distributions. An efficient nearest-neighbor matching algorithm is leveraged to
eliminate excess atoms. To increase functionality, the algorithm is able to read in
previously built structures and modify them at user request. This functionality al-
lows the user to resize, twin, or alloy a structure while retaining grain geometry.
In testing, the algorithm successfully produced a series of structures in which the
grain size, twin density, and texturing axis were varied while the grain geometry

remained consistent.

The algorithm produced from this research is currently being used to study the
effect of nanotwins on the mechanical response during deformation. This study is
being complemented by the use of virtual diffraction techniques to directly compare
results to experiments. Ongoing efforts are being made to expand the algorithm
to accommodate more complex structures, such as size distributions and irregular

grain sizes.

The nanocrystal_builder.py code can be downloaded by clicking here.

Approved for public release; distribution is unlimited.

14

File: nanocrystal_builder.py

Script builds nanocrystalline centers using optimized grain center placement

Daniel Foley

Army Research Laboratory

Summer 2015/2016

#----------Initialize----------

import os

import sys

import numpy as np

from scipy import spatial as sp

import random

import linecache

import math as mt

reference_mode = raw_input('Do you want to generate from a single reference or a configuration file ' \

					'(respond single or config):\n')

while reference_mode != 'single' and reference_mode != 'config':

	print ("I could not interpret your choice, please check your spelling and try again.")

	reference_mode = raw_input('single or config? ')

if reference_mode=='single':

	crref = raw_input('Input the reference file path:\n')

	avg_grain_size = float(raw_input('Input desired grain size in angstroms:\n'))

	box_bounds = raw_input('Input the box dimensions in angstroms\nUse the following convention' \

 ' lowerx, upperx, lowery, uppery, lowerz, upperz:\n')

	direction = raw_input('Input crystalline texturing direction\nReply "none" (quotations excluded)' \

 ' if no texturing desired\nUse following convention ' \

 'index_x, index_y, index_z:\n')

	if direction != 'none':

		direction = np.fromstring(direction,sep=',')

		direcnorm = np.linalg.norm(direction)

		direction = direction/direcnorm

elif reference_mode=='config':

	ref_list=raw_input('Input path of configuration file:\n')

	rescale_factor = float(raw_input('Input a scaling factor (1 if no change desired, must be ' \

 'greater than 0):\n'))

	contwin = float(raw_input('Percent of grains to be reassigned (decimal from 0-1):\n'))

	if contwin != 0.:

		twinr = raw_input('Input path of new reference file:\n')

	else:

		twinr = 'foo'

	direction = raw_input('Input crystalline texturing direction\nReply "none" (quotations ' \

 'excluded) if no texturing desired\nUse following convention ' \

 'index_x,index_y,index_z:\n')

	if direction != 'none':

		direction = np.fromstring(direction,sep=',')

		direcnorm = np.linalg.norm(direction)

		direction = direction/direcnorm

output_name = raw_input('Input desired output basename:\n')

#----------Define Functions----------

def efficient_packing(center,grain_size):

 #defines a point space in which the next grain center may be placed

	rot = np.linspace(0.,360*np.pi/180.,45).reshape(45,1)

	r = np.linspace(.75*grain_size,1.25*grain_size,20).reshape(20,1)

	zero = np.zeros((20,2))

	r = np.concatenate((r,zero),axis = 1)

	point_space = np.empty([20*45,3])

	n = 0

	for j in range(0,20): #this can probably be vectorized... work in progress

		for i in range(0,45):

			R_y = np.array([[np.cos(rot[i,0]),0,np.sin(rot[i,0])],[0,1,0], \

 [-np.sin(rot[i,0]),0,np.cos(rot[i,0])]])

			point_space[n,0:3] = np.dot(r[j,0:3],R_y)

			n = n + 1

	point_space_2 = np.empty([20*45*45,3])

	n = 0

	for j in range(0,len(point_space)): #this can probably be vectorized... work in progress

		for i in range(0,45):

			R_z = np.array([[np.cos(rot[i,0]),-np.sin(rot[i,0]),0],[np.sin(rot[i,0]), \

 np.cos(rot[i,0]),0],[0,0,1]])

			point_space_2[n,0:3] = np.dot(point_space[j,0:3],R_z)

			n = n+1

	point_space_2 = point_space_2 + center

	return point_space_2

def ghost_centers(centroids,box_limits):

 #defines grain centers as seen across periodic bounds as "ghosts"

	ghost_x = np.array([-(box_limits[0,1]-box_limits[0,0]),0,(box_limits[0,1]-box_limits[0,0])])

	ghost_y = np.array([-(box_limits[1,1]-box_limits[1,0]),0,(box_limits[1,1]-box_limits[1,0])])

	ghost_z = np.array([-(box_limits[2,1]-box_limits[2,0]),0,(box_limits[2,1]-box_limits[2,0])])

 ghost = np.empty([len(ghost_x)*len(ghost_y)*len(ghost_z),3])

 roll = 0

 for i in range(0,len(ghost_x)): #this can probably be vectorized... work in progress

		for j in range(0,len(ghost_y)):

			for k in range(0,len(ghost_z)):

 	ghost[roll,0] = ghost_x[i]

 ghost[roll,1] = ghost_y[j]

 ghost[roll,2] = ghost_z[k]

 roll = roll + 1

	if len(np.shape(centroids)) == 1:

		grain_centers_1 = centroids.reshape(1,3)

		grain_centers_2 = centroids.reshape(1,3)

	else:

		grain_centers_1 = centroids

		grain_centers_2 = centroids

	for i in range(0,len(ghost)):

		if ghost[i,0] == 0 and ghost[i,1] == 0 and ghost[i,2] == 0:

			continue

		else:

			hold_center = np.add(grain_centers_1[:,0:3], ghost[i,:])

			grain_centers_2 = np.concatenate((grain_centers_2,hold_center),axis=0)

	return grain_centers_2

def grain_centroid(amorphous_edge,grain_size):

 #assigns grain centers within an allowed space defined by the positions of existing grain centers

	box_vol = (amorphous_edge[0,1]-amorphous_edge[0,0])*(amorphous_edge[1,1]-amorphous_edge[1,0]) \

 *(amorphous_edge[2,1]-amorphous_edge[2,0])

	grain_volume = ((4./3.)*(grain_size / 2)**3)*np.pi

	N = int(box_vol / grain_volume)

	print 'approximate number of grains = %i' % (N)

	centroids = np.array([[(grain_size / 2.),(grain_size / 2.),(grain_size / 2.)]])

	allowed = efficient_packing(centroids[0,0:3],grain_size)

	allowed = transpose_periodic_bounds(allowed,amorphous_edge)

	ghost = ghost_centers(centroids[0,:],amorphous_edge)

	for i in range(1,N):

		print 'asigning grain %i' % (i)

		if len(allowed) == 0:

			print 'out of space'

			break

		choose = random.randint(0,len(allowed)-1)

		centroids = np.concatenate((centroids,allowed[choose,0:3].reshape(1,3)))

		allowed = np.concatenate((allowed,efficient_packing(centroids[i,0:3],grain_size)))

		centtree = sp.cKDTree(ghost_centers(centroids[0:i+1,:],amorphous_edge))

		dist, index = centtree.query(allowed)

		deny = np.where(dist < .75*grain_size,False,True)

		if np.any(deny) == 'False':

			print 'out of space, %i grains assigned' % (i)

			break

		allowed = allowed[deny,:]

		allowed = transpose_periodic_bounds(allowed,amorphous_edge)

	return centroids

def seed_rotations(refdat,grain_center,grabradius,grabedges,axis,angle):

 #function extracts and rotates crystalline seeds (updated in version 2)

	holdx1 = int(grabedges[0,0]+grabradius)

	holdx2 = int(grabedges[0,1]-grabradius)

	if holdx1 == holdx2:

		holdx1 = holdx1 - 2

		holdx2 = holdx2 + 2

	if holdx1 > holdx2:

		holdx1 = int(grabedges[0,1]-grabradius)

		holdx2 = int(grabedges[0,0]+grabradius)

	holdy1 = int(grabedges[1,0]+grabradius)

	holdy2 = int(grabedges[1,1]-grabradius)

	if holdy1 == holdy2:

		holdy1 = holdy1 - 2

		holdy2 = holdy2 + 2

	if holdy1 > holdy2:

		holdy1 = int(grabedges[1,1]-grabradius)

		holdy2 = int(grabedges[1,0]+grabradius)

	holdz1 = int(grabedges[2,0]+grabradius)

	holdz2 = int(grabedges[2,1]-grabradius)

	if holdz1 == holdz2:

		holdz1 = holdz1 - 2

		holdz2 = holdz2 + 2

	if holdz1 > holdz2:

		holdz1 = int(grabedges[2,1]-grabradius)

		holdz2 = int(grabedges[2,0]+grabradius)

 x_c = float(random.randint(holdx1,holdx2))

 y_c = float(random.randint(holdy1,holdy2))

 z_c = float(random.randint(holdz1,holdz2))

 dtree = sp.cKDTree(refdat[:,2:5])

 neighpoint = dtree.query_ball_point([x_c,y_c,z_c], grabradius)

 datsphere = refdat[np.asarray(neighpoint),2:5]

 datsphere1 = datsphere[:,0:3]-[x_c,y_c,z_c]

	R = np.array([[np.cos(angle)+(axis[0]**2)*(1-np.cos(angle)),\

 axis[0]*axis[1]*(1-np.cos(angle))-axis[2]*np.sin(angle),\

 axis[0]*axis[2]*(1-np.cos(angle))+axis[1]*np.sin(angle)],\

 [axis[1]*axis[0]*(1-np.cos(angle))+axis[2]*np.sin(angle),\

 np.cos(angle)+(axis[1]**2)*(1-np.cos(angle)), \

 axis[1]*axis[2]*(1-np.cos(angle))-axis[0]*np.sin(angle)],\

 [axis[2]*axis[0]*(1-np.cos(angle))-axis[1]*np.sin(angle),\

 axis[2]*axis[1]*(1-np.cos(angle))+axis[0]*np.sin(angle),\

 np.cos(angle)+(axis[2]**2)*(1-np.cos(angle))]])

 datsphererot = np.dot(datsphere1, R)

 datspherefinal = datsphererot + grain_center

 return datsphere, datspherefinal

def check_ownership(grain_centers,atoms,box_limits):

 #checks to make sure an atom's nearest center is its parent center, deletes atom if not

	grain_centers = ghost_centers(grain_centers,box_limits)

	centertree = sp.cKDTree(grain_centers)

	dist, label = centertree.query(atoms[:,0:3])

	check = np.equal(atoms[:,3],label)

	output_atoms = atoms[check,0:4]

	return output_atoms, grain_centers

def transpose_periodic_bounds(atoms,box_lims):

 #reflects atoms which exist outside the box bounds through the periodic conditions

	lower = np.empty([len(atoms),3])

	lower[:,0:3] = [box_lims[0,0],box_lims[1,0],box_lims[2,0]]

	upper = np.empty([len(atoms),3])

	upper[:,0:3] = [box_lims[0,1],box_lims[1,1],box_lims[2,1]]

	test_l = np.less_equal(atoms[:,0:3],lower[:,0:3])

	test_u = np.greater_equal(atoms[:,0:3],upper[:,0:3])

	shift_l = np.where(test_l,1,0)

	shift_u = np.where(test_u,-1,0)

	shift_L = np.multiply(shift_l[:,0:3],np.array([box_lims[0,1]-box_lims[0,0],\

 box_lims[1,1]-box_lims[1,0],\

 box_lims[2,1]-box_lims[2,0]]))

	shift_U = np.multiply(shift_u[:,0:3],np.array([box_lims[0,1]-box_lims[0,0],\

 box_lims[1,1]-box_lims[1,0],\

 box_lims[2,1]-box_lims[2,0]]))

	out_atoms = atoms

	out_atoms[:,0:3] = np.add(atoms[:,0:3],shift_L)

	out_atoms[:,0:3] = np.add(atoms[:,0:3],shift_U)

	return out_atoms

def reference_rescale(ref_atoms,box_lims,grain_size):

 #function resizes the reference structure to accomodate requested grain size

	rescale_length = np.array([(grain_size - (box_lims[0,1]-box_lims[0,0])),\

 (grain_size - (box_lims[1,1]-box_lims[1,0])),\

 (grain_size - (box_lims[2,1]-box_lims[2,0]))])

	if rescale_length[0] > 0.0 \

 or rescale_length[1] > 0.0\

 or rescale_length[2] > 0.0:

		n_x = int(rescale_length[0]/(box_lims[0,1]-box_lims[0,0]))+2

		n_y = int(rescale_length[1]/(box_lims[1,1]-box_lims[1,0]))+2

		n_z = int(rescale_length[2]/(box_lims[2,1]-box_lims[2,0]))+2

		new_ref = ref_atoms

		for i in range(0,n_x+1):

			for j in range(0,n_y+1):

				for k in range(0,n_z+1):

					if i == 0 and k == 0 and j == 0:

						continue

					else:

						new_ats = ref_atoms + [0,0,float(i)*(box_lims[0,1]-box_lims[0,0]),\

 float(j)*(box_lims[1,1]-box_lims[1,0]),\

 float(k)*(box_lims[2,1]-box_lims[2,0])]

						new_ref = np.concatenate((new_ref,new_ats))

	else:

		replicate_range = np.array([[box_lims[0,0],box_lims[0,0]+2*rescale_length[0]],\

 [box_lims[1,0],box_lims[1,0]+2*rescale_length[1]],\

 [box_lims[2,0],box_lims[2,0]+2*rescale_length[2]]])

		check_x=np.where(ref_atoms[:,2] <= replicate_range[0,1],True,False)

		rep_atoms_x = ref_atoms[check_x[:],:]

		rep_atoms_x[:,2]=rep_atoms_x[:,2] + (box_lims[0,1]-box_lims[0,0])

		rep_atoms = np.concatenate((ref_atoms,rep_atoms_x),axis=0)

		check_y=np.where(rep_atoms[:,3] <= replicate_range[1,1],True,False)

		rep_atoms_y = rep_atoms[check_y[:],:]

		rep_atoms_y[:,3]=rep_atoms_y[:,3] + (box_lims[1,1]-box_lims[1,0])

		rep_atoms = np.concatenate((rep_atoms,rep_atoms_y),axis=0)

		check_z=np.where(rep_atoms[:,4] <= replicate_range[2,1],True,False)

		rep_atoms_z = rep_atoms[check_z[:],:]

		rep_atoms_z[:,4]=rep_atoms_z[:,4] + (box_lims[2,1]-box_lims[2,0])

		rep_atoms = np.concatenate((rep_atoms,rep_atoms_z),axis=0)

		new_ref = rep_atoms

	return new_ref

def multireference(ref_list,grain_size,alimits,rescale,percent_twin,twin_reference,axis,angle):

 #function will extract centroid and box data from config file and build a new structure accordingly

	c_refs = np.loadtxt('%s' % (ref_list),skiprows=2,\

 dtype={'names':('id','c_x','c_y','c_z','axisr_x','axisr_y','axisr_z','angler','file'),\

 'formats':('i4','f4','f4','f4','f4','f4','f4','f4','S32')})

	n_grains = float(len(c_refs))

	n_twinned = n_grains * percent_twin

	check = np.empty((int(n_twinned),1),dtype=int)

	print 'reassigning %i reference files' % (n_twinned)

	for i in range(0,int(n_twinned)):

		itl = random.randint(0,len(c_refs)-1)

		while np.any(check[:]==itl)==True:

			itl = random.randint(0,len(c_refs)-1)

		c_refs['file'][itl] = '%s' % (twin_reference)

		check[i,0] = itl

	center = np.empty((len(c_refs),3))

	f=open('%s_centroids.config' % (output_name),'w')

	f.write('#data for centroids\n')

	f.write('%f %f %f %f %f %f %f\n' % (grain_size*rescale, alimits[0,0], alimits[0,1]*rescale,\

 alimits[1,0], alimits[1,1]*rescale, alimits[2,0], alimits[2,1]*rescale))

	finaldat = np.empty([0,4])

	print 'populating atoms'

	for i in range(0,len(c_refs)):

		print 'populating grain %i' % (i)

		limsx = np.fromstring(linecache.getline('%s' % (c_refs['file'][i]),6),sep=' ')

		limsy = np.fromstring(linecache.getline('%s' % (c_refs['file'][i]),7),sep=' ')

		limsz = np.fromstring(linecache.getline('%s' % (c_refs['file'][i]),8),sep=' ')

		limits = np.concatenate((limsx,limsy,limsz),axis=0).reshape(3,2)

		cdat=np.loadtxt('%s' % c_refs['file'][i],skiprows=9,usecols=(0,1,2,3,4))

		if 1.5*grain_size*rescale >= (limits[0,1]-limits[0,0]) \

 or 1.5*grain_size*rescale >= (limits[1,1]-limits[1,0]) \

 or 1.5*grain_size*rescale >= (limits[2,1]-limits[2,0]):

			cdat = reference_rescale(cdat,limits,1.5*grain_size*rescale)

			limits = np.array([[np.amin(cdat[:,2]),np.amax(cdat[:,2])],[np.amin(cdat[:,3]),\

 np.amax(cdat[:,3])],[np.amin(cdat[:,4]),np.amax(cdat[:,4])]])

		if axis != 'none':

			c_refs['axisr_x'] = axis[0]

			c_refs['axisr_y'] = axis[1]

			c_refs['axisr_z'] = axis[2]

			haxis = axis

			f.write('%i %f %f %f %f %f %f %f %s\n' % (i, c_refs['c_x'][i]*rescale, \

 c_refs['c_y'][i]*rescale, c_refs['c_z'][i]*rescale, c_refs['axisr_x'][i],\

 c_refs['axisr_y'][i], c_refs['axisr_z'][i], c_refs['angler'][i], \

 c_refs['file'][i]))

			center[i,:]=[c_refs['c_x'][i]*rescale,c_refs['c_y'][i]*rescale,c_refs['c_z'][i]*rescale]

			[trydat, seeddat]=seed_rotations(cdat,[c_refs['c_x'][i]*rescale,\

 c_refs['c_y'][i]*rescale,\

 c_refs['c_z'][i]*rescale],\

 1.5*rescale*grain_size/2,limits,haxis,\

 c_refs['angler'][i])

		else:

			f.write('%i %f %f %f %f %f %f %f %s\n' % (i, c_refs['c_x'][i]*rescale, \

 c_refs['c_y'][i]*rescale, \

 c_refs['c_z'][i]*rescale, \

 c_refs['axisr_x'][i], \

 c_refs['axisr_y'][i], \

 c_refs['axisr_z'][i], \

 c_refs['angler'][i], \

 c_refs['file'][i]))

			center[i,:]=[c_refs['c_x'][i]*rescale,c_refs['c_y'][i]*rescale,c_refs['c_z'][i]*rescale]

			haxis = np.array([c_refs['axisr_x'][i], c_refs['axisr_y'][i], c_refs['axisr_z'][i]])

			[trydat, seeddat]=seed_rotations(cdat,[c_refs['c_x'][i]*rescale,\

 c_refs['c_y'][i]*rescale,\

 c_refs['c_z'][i]*rescale],\

 1.5*rescale*grain_size/2,limits,haxis,\

 c_refs['angler'][i])

		seeddat = np.insert(seeddat,3,i,axis=1)

		finaldat = np.concatenate((finaldat,seeddat))

		linecache.clearcache()

	f.close()

	return finaldat, center

#----------Main Body----------

if reference_mode == 'single':

	cdat = np.loadtxt('%s' % (crref),skiprows=9,usecols=(0,1,2,3,4))

	limsx = np.fromstring(linecache.getline('%s' % (crref),6),sep=' ')

	limsy = np.fromstring(linecache.getline('%s' % (crref),7),sep=' ')

	limsz = np.fromstring(linecache.getline('%s' % (crref),8),sep=' ')

	lims = np.concatenate((limsx,limsy,limsz),axis=0).reshape(3,2)

#	print lims

	# Check if the average grain size is larger than the box bounds

	if 1.5*avg_grain_size >= (lims[0,1]-lims[0,0]) or 1.5*avg_grain_size >= (lims[1,1]-lims[1,0]) \

									or 1.5*avg_grain_size >= (lims[2,1]-lims[2,0]):

		cdat = reference_rescale(cdat,lims,1.5*avg_grain_size)

		lims = np.array([[np.amin(cdat[:,2]),np.amax(cdat[:,2])],\

 [np.amin(cdat[:,3]),np.amax(cdat[:,3])],\

 [np.amin(cdat[:,4]),np.amax(cdat[:,4])]])

	lims2 = np.fromstring(box_bounds,sep=',').reshape(3,2)

	if avg_grain_size >= (lims2[0,1]-lims2[0,0]) or avg_grain_size >= (lims2[1,1]-lims2[1,0]) \

 								 or avg_grain_size >= (lims2[2,1]-lims2[2,0]):

		sys.exit("grain size larger than defined simulation box, change box sizes")

	print 'assigning grain centers'

	center = grain_centroid(lims2,avg_grain_size)

	finaldat = np.empty([0,4])

	a = np.ones((len(cdat),1)).reshape(len(cdat),1)

	b = np.arange(1,len(cdat)+1).reshape(len(cdat),1)

	cdat = np.concatenate((b,a,cdat[:,2:5]),axis=1)

	centout=np.empty((len(center),8))

	f=open('%s_centroids.config' % (output_name),'w')

	f.write('#data for centroids\n')

	f.write('%f %f %f %f %f %f %f\n' % (avg_grain_size,lims2[0,0],lims2[0,1],lims2[1,0],\

 lims2[1,1],lims2[2,0],lims2[2,1]))

	print 'populating atoms'

	for i in range(0,len(center)):

		print 'populating grain %i' % (i)

		if direction == 'none':

			axis = np.array([random.uniform(0,10),random.uniform(0,10),random.uniform(0,10)])

			axnorm = np.linalg.norm(axis)

			axis = axis/axnorm

			angle = mt.radians(random.uniform(0,180))

		else:

			axis = direction

			angle = random.uniform(0,180)

		f.write('%i %f %f %f %f %f %f %f %s\n' % (i,center[i,0],center[i,1],center[i,2],axis[0],\

 axis[1],axis[2],angle,crref))

		[trydat, seeddat] = seed_rotations(cdat,center[i,0:3],1.5*avg_grain_size/2,lims,axis,angle)

		seeddat = np.insert(seeddat,3,i,axis = 1)

		finaldat = np.concatenate((finaldat,seeddat))

	f.close()

	print 'finaldat=', len(finaldat)

	print 'trimming excess atoms'

	cut_atoms,check_centers = check_ownership(center,finaldat[:,0:4],lims2)

	print 'cut_atoms=', len(cut_atoms)

	print 'wrapping periodic bounds'

	fin_atoms = transpose_periodic_bounds(cut_atoms,lims2)

	idcol = np.ones([len(cut_atoms),1])

	fin_atoms = np.concatenate((idcol,cut_atoms), axis = 1)

	numcol = np.arange(1,len(fin_atoms)+1).reshape(len(fin_atoms),1)

	fin_atoms = np.concatenate((numcol,fin_atoms), axis = 1)

	output_atoms = np.column_stack((fin_atoms[:,0],fin_atoms[:,5]+1,fin_atoms[:,2],\

 fin_atoms[:,3],fin_atoms[:,4]))

	print 'outputting to data file'

	head = ("#data file for lammps\n%i atoms\n%s atom types\n%f %f xlo xhi\n%f %f ylo "\

 "yhi\n%f %f zlo zhi\n\nAtoms\n") % (len(output_atoms),len(center)+1,lims2[0,0],\

 lims2[0,1],lims2[1,0],lims2[1,1],lims2[2,0],lims2[2,1])

	np.savetxt('data.%s' % (output_name),output_atoms, fmt='%i %i %f %f %f')

	f=open('data.%s' % (output_name),'r')

	data1 = f.read()

	f.close()

	g=open('data.%s' % (output_name),'w')

	g.write('%s\n' % (head))

	g.write('%s' % (data1))

	g.close()

else:

	print 'reading configuration data'

	conf = np.fromstring(linecache.getline('%s' % (ref_list),2),sep=' ')

	avg_grain_size = conf[0]

	lims = conf[1:].reshape(3,2)

	lims2 = lims * rescale_factor

	axis = direction

	angle = mt.radians(random.uniform(0,180))

	[finaldat, center] = multireference(ref_list,avg_grain_size,lims,rescale_factor,contwin,\

 twinr,axis,angle)

	if avg_grain_size*rescale_factor >= (lims2[0,1]-lims2[0,0]) \

 		or avg_grain_size*rescale_factor >= (lims2[1,1]-lims2[1,0]) \

 or avg_grain_size*rescale_factor >= (lims2[2,1]-lims2[2,0]):

		sys.exit("grain size larger than defined simulation box, change box sizes")

	a = np.ones((len(finaldat),1)).reshape(len(finaldat),1)

	b = np.arange(1,len(finaldat)+1).reshape(len(finaldat),1)

	finaldat = np.concatenate((b,a,finaldat),axis=1)

	print 'trimming excess atoms'

	cut_atoms,check_centers = check_ownership(center,finaldat[:,2:6],lims2)

	a = np.ones((len(cut_atoms),1)).reshape(len(cut_atoms),1)

	b = np.arange(1,len(cut_atoms)+1).reshape(len(cut_atoms),1)

	cut_atoms = np.concatenate((b,a,cut_atoms),axis=1)

	print 'wrapping periodic bounds'

	fin_atoms = transpose_periodic_bounds(cut_atoms[:,2:5],lims2)

	idcol = np.ones([len(cut_atoms),1])

	fin_atoms = np.concatenate((idcol,cut_atoms), axis = 1)

	numcol = np.arange(1,len(fin_atoms)+1).reshape(len(fin_atoms),1)

	fin_atoms = np.concatenate((numcol,fin_atoms), axis = 1)

	output_atoms = np.column_stack((fin_atoms[:,0],fin_atoms[:,7]+1,fin_atoms[:,4],\

 fin_atoms[:,5],fin_atoms[:,6]))

	print 'outputting to data file'

	head = ("#data file for lammps\n%i atoms\n%s atom types\n%f %f xlo xhi\n%f %f ylo "\

 "yhi\n%f %f zlo zhi\n\nAtoms\n") % (len(fin_atoms),len(center)+1,lims2[0,0],\

 lims2[0,1],lims2[1,0],lims2[1,1],lims2[2,0],lims2[2,1])

	np.savetxt('data.%s' % (output_name),output_atoms, fmt='%i %i %f %f %f')

	f=open('data.%s' % (output_name),'r')

	data1 = f.read()

	f.close()

	g=open('data.%s' % (output_name),'w')

	g.write('%s\n' % (head))

	g.write('%s' % (data1))

	g.close()

Daniel Foley

8.

References

Plimpton S. Fast parallel algorithms for short-range molecular dynamics.
J Comput Phys. 1995;117:1-19.

LAMMPS molecular dynamics simulator. Albuquerque (NM): Sandia National
Laboratories; 2016 [accessed 2016 July]. http://lammps.sandia.gov/index.html.

Stukowski A. Visualization and analysis of atomistic simulation data with
OVITO - the open visualization tool. Modelling Simul Mater Sci Eng.
2010;18:015012. http://ovito.org/.

Approved for public release; distribution is unlimited.

15

http://lammps.sandia.gov/index.html
http://ovito.org/

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

16

Appendix. Python Script: nanocrystal_builder.py Function

This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.

17

81

‘palWIuUN S| uonNqLIsIp ‘asesaJ d1jgnd Joy panoiddy

File: nanocrystal_builder.py

Script builds nanocrystalline centers using optimized grain center placement
Daniel Foley

Army Research Laboratory

Summer 2015/2016

.

import os

import sys

import numpy as np

from scipy import spatial as sp
import random

import linecache

import math as mt

reference_mode = raw_input ('Do you want to generate from a single reference or a configuration file

' (respond single or config) :\n'")

while reference_mode != 'single' and reference_mode != 'config':
print ("I could not interpret your choice, please check your spelling and try again.")
reference_mode = raw_input ('single or config? ')

if reference_mode=='single':
crref = raw_input ('Input the reference file path:\n')

avg_grain_size = float (raw_input ('Input desired grain size in angstroms:\n'))

\

61

‘palWIuUN S| uonNqLIsIp ‘asesaJ d1jgnd Joy panoiddy

box_bounds = raw_input ('Input the box dimensions in angstroms\nUse the following convention'

direction = raw_input ('Input crystalline texturing direction\nReply "none"

if direction !

' lowerx, upperx, lowery, uppery, lowerz, upperz:\n')

' if no texturing desired\nUse following convention ' \
'"index_x, index_y, index_z:\n')

'none':

direction = np.fromstring(direction,sep=',")
direcnorm = np.linalg.norm(direction)
direction = direction/direcnorm

elif reference_mode=='config':

ref_list=raw_input ('Input path of configuration file:\n"')

rescale_factor

contwin = float (raw_input ('Percent of grains to be reassigned (decimal from 0-1):\n'"))
if contwin != 0.:
twinr = raw_input ('Input path of new reference file:\n')
else:
twinr = 'foo'
direction = raw_input ('Input crystalline texturing direction\nReply "none" (quotations

if direction !
direction
direcnorm

direction

float (raw_input ('Input a scaling factor (1 if no change desired, must be

'greater than 0):\n'"))

'excluded) if no texturing desired\nUse following convention
'index_x,index_y,index_z:\n")

'none’':

np.fromstring(direction, sep=",")

np.linalg.norm(direction)

direction/direcnorm

\

(quotations excluded)'

\

\

0¢

‘pajWI|UN SI uoiNgLsIp ‘@seajad 1gnd Joj panosddy

output_name = raw_input ('Input desired output basename:\n')

def efficient_packing(center,grain_size):

#defines a point space in which the next grain center may be placed

rot = np.linspace(0.,360*np.pi/180.,

45) .reshape (45,1)

r = np.linspace(.75*xgrain_size,1.25+«grain_size,20) .reshape (20,1)

zero = np.zeros((20,2))

r = np.concatenate((r,zero),axis = 1)

point_space = np.empty ([20%45,3])

n =20

for j in range(0,20): #this can probably be vectorized...

for i in range(0,45):

R y = np.array([[np.cos(rot[i,0]),0,np.sin(rot[i,01)1,10,1,01,

[-np.sin(rot[i,0]),0,np.cos(rot[i,0])11)

point_space[n,0:3] = np.dot(r[]j,0:3],R_y)

n=n-+1

point_space_2 = np.empty ([20%45x45,37])

n=20
for j in range (0, len(point_space)):

for i in range(0,45):

#this can probably be vectorized...

\

work in progress

work in progress

R_z = np.array([[np.cos(rot[i,0]),-np.sin(rot[i,0]),0], [np.sin(rot[i,0]), \
np.cos (rot[i,0]),0],10,0,111)
point_space_2[n,0:3] = np.dot (point_space[j,0:3],R_z)

IT

‘palWIuUN S| uonNqLIsIp ‘asesaJ d1jgnd Joy panoiddy

def

ghost_x = np.array ([
ghost_y
ghost_z = np.array ([

n = n+l

point_space_2 = point_space_2 + center

return point_space_2

ghost_centers (centroids,box_limits) :

#defines grain centers as seen across periodic bounds as "ghosts"

box_limits[0,1]-box_1imits[0,0]),0, (box_limits[0,1]-box_limits[0,0])])
box_limits([1l,1]-box_1limits[1,0]),0, (box_limits([1l,1]-box_limits[1,0])])
box_limits([2,1]-box_limits[2,0]),0, (box_limits([2,1]-box_limits[2,0])])
len (ghost_x) xlen (ghost_y) *len(ghost_z),31)

=

np.array ([
=

ghost = np.empty ([

roll = 0

for i in range(0,len(ghost_x)): #this can probably be vectorized... work in progress

for 7 in range (0, len(ghost_y)):

for k in range (0, len(ghost_z)):

ghost [roll, 0] = ghost_x[1i]
ghost[roll,1l] = ghost_yI[7j]
ghost[roll,2] = ghost_zI[k]
roll = roll + 1
if len(np.shape(centroids)) == 1:
grain_centers_1 = centroids.reshape (1, 3)
grain_centers_2 = centroids.reshape (1, 3)
else:
grain_centers_1 = centroids
grain_centers_2 = centroids

for 1 in range (0, len(ghost)):

if ghost[i,0] == 0 and ghost[i,1] == 0 and ghost[i,2] ==

C

‘palWIuUN S| uonNqLIsIp ‘asesaJ d1jgnd Joy panoiddy

def

continue

else:
hold_center = np.add(grain_centers_1[:,0:3], ghost[i,:])
grain_centers_2 = np.concatenate ((grain_centers_2,hold_center),axis=0)

return grain_centers_2

grain_centroid(amorphous_edge,grain_size):
#assigns grain centers within an allowed space defined by the positions of existing grain centers
box_vol = (amorphous_edge[0,1]-amorphous_edge[0,0]) * (amorphous_edge[1l,1]-amorphous_edge[1,0]) \
* (amorphous_edge[2, 1] —amorphous_edge[2,0])
grain_volume = ((4./3.)*(grain_size / 2)**3)+*np.pi

N = int (box_vol / grain_volume)

print 'approximate number of grains = %i' % (N)
centroids = np.array([[(grain_size / 2.), (grain_size / 2.), (grain_size / 2.)11])

allowed = efficient_packing(centroids([0,0:3],grain_size)
allowed = transpose_periodic_bounds (allowed, amorphous_edge)
ghost = ghost_centers(centroids[0, :],amorphous_edge)
for 1 in range(l,N):

print 'asigning grain %i' % (i)

if len(allowed) ==

print 'out of space'

break
choose = random.randint (0, len(allowed)-1)
centroids = np.concatenate ((centroids,allowed[choose,0:3].reshape(l,3)))
allowed = np.concatenate((allowed,efficient_packing(centroids[i,0:3],grain_size)))

centtree = sp.cKDTree (ghost_centers (centroids[0:i+1, :],amorphous_edge))

‘palWIuUN S| uonNqLIsIp ‘asesaJ d1jgnd Joy panoiddy

€C

dist, index = centtree.query(allowed)
deny = np.where(dist < .75xgrain_size,False, True)
if np.any(deny) == 'False'
print 'out of space, %i grains assigned' % (i)
break
allowed = allowed[deny, :]

allowed = transpose_periodic_bounds (allowed, amorphous_edge)

return centroids

def seed_rotations(refdat,grain_center,grabradius, grabedges,axis, angle) :

#function extracts and rotates crystalline seeds (updated in version 2)

holdxl = int (grabedges[0,0]+grabradius)

holdx2 = int (grabedges[0,1]-grabradius)

if holdxl == holdx2:
holdxl = holdxl - 2
holdx2 = holdx2 + 2

if holdxl > holdx2:
holdxl = int (grabedges 1]-grabradius)

[0

holdx2 = 1nt(grabedges[0 0]+grabradius)
0]
1]

holdyl = int (grabedges|[1l +grabradius)
holdy2 = int (grabedges|[1l —grabradius)
if holdyl == holdy2:

holdyl = holdyl - 2
holdy2 = holdy2 + 2
if holdyl > holdy2:

¥C

‘palWIuUN S| uonNqLIsIp ‘asesaJ d1jgnd Joy panoiddy

holdyl
holdy2 = int (grabedges
holdzl = int (grabedges[2,0
holdz2 = int (grabedges[2,1]-grabradius)
if holdzl == holdz2:
holdzl holdzl - 2
holdz2 = holdz2 + 2
if holdzl > holdz2:
holdzl = int (grabedges[2,1]-grabradius)

int (grabedges[1l,1l]-grabradius)
1,0]+grabradius)

+grabradius)

[
[
]
]

]
holdz2 = int (grabedges[2,0]+grabradius)
float (random.randint (holdx1l,holdx2))
(
(

X_C
y_c = float (random.randint (holdyl, holdy2))
zZ_C float (random.randint (holdzl,holdz2))
dtree = sp.cKDTree (refdat[:,2:5])

neighpoint = dtree.query_ball_point([x_c,y_c,z_c], grabradius)

datsphere = refdat[np.asarray (neighpoint),2:5]
datspherel = datsphere[:,0:3]-[x_c,y_c,z_c]

R = np.array([[np.cos(angle)+ (axis[0]*%2)* (1l-np.cos (angle)),\
axis[0]*axis[l]l*(1l-np.cos(angle))—-axis[2]+np.sin (angle),\
axis[0]*axis[2]* (1l-np.cos (angle))+axis[1l]+np.sin(angle)],\
[axis[1l]*axis[0]* (1-np.cos (angle))+axis[2]*np.sin(angle),\
np.cos (angle)+(axis[1l]**2) *« (1l-np.cos (angle)), \
axis[l]*axis[2]* (l-np.cos(angle))-axis[0]*np.sin (angle)],\
[axis[2]+axis[0]* (l-np.cos (angle))-axis[l]*np.sin(angle), \
axis[2]*axis[l]*(1l-np.cos (angle))+axis[0]+np.sin (angle), \

np.cos (angle)+(axis[2]**2) x (1l-np.cos (angle))11)

¢

‘palWIuUN S| uonNqLIsIp ‘asesaJ d1jgnd Joy panoiddy

def

def

datsphererot = np.dot (datspherel, R)
datspherefinal = datsphererot + grain_center

return datsphere, datspherefinal

check_ownership(grain_centers, atoms,box_limits) :

#checks to make sure an atom's nearest center is its parent center, deletes atom if not

grain_centers = ghost_centers(grain_centers,box_limits)
centertree = sp.cKDTree (grain_centers)
dist, label = centertree.query(atoms[:,0:3])

check = np.equal (atoms[:, 3], label)
output_atoms = atoms|[check,0:4]

return output_atoms, grain_centers

transpose_periodic_bounds (atoms,box_lims) :
#freflects atoms which exist outside the box bounds through the periodic conditions
lower = np.empty([len(atoms),3])
lower[:,0:3] = [box_1ims[0,0],box_lims[1l,0],box_lims[2,0]]
upper = np.empty([len(atoms),3])
upper[:,0:3] = [box_1lims[0,1],box_lims([1,1],box_lims[2,1]]
test_1 = np.less_equal (atoms[:,0:3],lower[:,0:3])
test_u = np.greater_equal (atoms[:,0:3],upper[:,0:31])
shift_1 = np.where(test_1,1,0)
shift_u = np.where(test_u,-1,0)
shift_L

np.multiply (shift_1[:,0:3],np.array ([box_lims[0,1]-box_lims[0,0],\
box_lims[1l,1]-box_lims[1,0],\
box_lims([2,1]-box_lims[2,0]71))

9¢

‘palWIuUN S| uonNqLIsIp ‘asesaJ d1jgnd Joy panoiddy

def

shift_U = np.multiply(shift_ul:,0:3],np.array([box_lims[0,1]-box_lims[0,0],\
box_lims[1l,1]-box_lims[1,0],\
box_lims[2,1]-box_lims[2,0]1]))

out_atoms = atoms

out_atoms[:,0:3] np.add(atoms[:,0:3],shift_L)

np.add(atoms[:,0:3],shift_U)

out_atoms[:,0:3]

return out_atoms

reference_rescale (ref_atoms,box_lims,grain_size):

#function resizes the reference structure to accomodate requested grain size

rescale_length = np.array ([(grain_size - (box_1ims[0,1]-box_1ims[0,07)),\
(grain_size - (box_lims[1l,1]-box_lims([1,0])),\
(grain_size - (box_lims[2,1]-box_1lims[2,0]))])

if rescale_length[0] > 0.0 \
or rescale_length[1l] > 0.0\
or rescale_length[2] > 0.0:
n_x = int (rescale_length[0]/ (box_lims[0,1]-box_lims[0,0]))+2
n_y = int (rescale_length[1]/ (box_lims[1l,1]-box_lims[1,0]))+2
n_z = int (rescale_length[2]/ (box_lims[2,1]-box_lims[2,0]))+2
new_ref = ref_atoms
for i in range(0,n_x+1):
for 7 in range(0,n_y+1):
for k in range(0,n_z+1):
if i == 0 and k == 0 and j == 0:
continue

else:

‘palWIuUN S| uonNqLIsIp ‘asesaJ d1jgnd Joy panoiddy

LT

new_ats = ref_atoms + [0,0,float (i) (box_lims[0,1]-box_1ims[0,01),\
float (J) x (box_lims[1,1]-box_lims[1,0]),\
float (k) * (box_lims[2,1]-box_1lims[2,0])]
new_ref = np.concatenate ((new_ref,new_ats))
else:
replicate_range = np.array ([[box_1ims[0,0],box_1lims[0,0]+2*rescale_length[0]],\

[box_1lims[1,0],box_lims[1l,0]+2xrescale_length[1]],\
[box_1lims[2,0],box_lims[2,0]+2xrescale_length[2]]1])

check_x=np.where (ref_atoms[:,2] <= replicate_range[0,1],True,False)

rep_atoms_x = ref_atoms|[check_x[:], :]

rep_atoms_x[:,2]=rep_atoms_x[:,2] + (box_lims[0,1]-box_1lims[0,0])

rep_atoms = np.concatenate((ref_atoms,rep_atoms_x),axis=0)

check_y=np.where (rep_atoms[:,3] <= replicate_range[l,1],True,False)

rep_atoms_y = rep_atoms[check_y[:], :]

rep_atoms_y[:,3]=rep_atoms_y[:,3] + (box_lims[1l,1]-box_lims[1,0])

rep_atoms = np.concatenate ((rep_atoms, rep_atoms_y),axis=0)

check_z=np.where(rep_atoms[:,4] <= replicate_range[2,1],True,False)

rep_atoms_z = rep_atoms[check_z[:], :]

rep_atoms_z[:,4]=rep_atoms_z[:,4] + (box_lims[2,1]-box_lims[2,0])

rep_atoms = np.concatenate ((rep_atoms, rep_atoms_z),axis=0)

new_ref = rep_atoms

return new_ref

def multireference (ref_list,grain_size,alimits, rescale,percent_twin,twin_reference,axis,angle):
#function will extract centroid and box data from config file and build a new structure accordingly

c_refs = np.loadtxt ('%$s' % (ref_list),skiprows=2,\

8¢

‘pajWI|UN SI uoiNgLsIp ‘@seajad 1gnd Joj panosddy

dtype={'names': ('id','c_x"','c_y','c_z', 'axisr_x"', 'axisr_y"', 'axisr_z','angler','file"),\
'formats': ('i4"','f£4","£4","£4", "£4" T £4Y, " £40,£4",'S32") })

n_grains = float (len(c_refs))

n_twinned = n_grains * percent_twin

check = np.empty ((int(n_twinned),l),dtype=int)
print 'reassigning %i reference files' % (n_twinned)

for 1 in range (0, int (n_twinned)):

itl = random.randint (0, len(c_refs)-1)
while np.any(check[:]==itl)==True:
itl random.randint (0, len(c_refs)-1)
c_refs['file'][itl] = '"%$s' % (twin_reference)
check[i,0] = itl
center = np.empty((len(c_refs),3))
f=open ('%$s_centroids.config' % (output_name), 'w'")

f.write('#data for centroids\n')

f.write('$f %f %f $f %f %f %$f\n' % (grain_size*rescale, alimits[0,0], alimits[0,1]+*rescale,\

alimits([1,0], alimits[l,1l]+*rescale, alimits([2,0], alimits[2,1]*rescale))
finaldat = np.empty ([0,41])
print 'populating atoms'
for i in range (0, len(c_refs)):

[

print 'populating grain %$i' % (1)

limsx = np.fromstring(linecache.getline('%s' % (c_refs['file'][i]),6),sep=" ")
limsy = np.fromstring(linecache.getline('%s' % (c_refs['file'][i]),7),sep=" ")
limsz = np.fromstring(linecache.getline('%s' % (c_refs['file']l[i]),8),sep=" ")
limits = np.concatenate((limsx,limsy, limsz),axis=0) .reshape(3,2)

cdat=np.loadtxt ('$s' % c_refs['file'][i],skiprows=9,usecols=(0,1,2,3,4))

6¢C

‘palWIuUN S| uonNqLIsIp ‘asesaJ d1jgnd Joy panoiddy

if 1

if a

.5%grain_sizexrescale >= (limits[0,1]-1imits[0,0]) \
or 1.5+«grain_sizexrescale >= (limits[1,1]-1imits[1,0]) \
or 1.5+«grain_sizexrescale >= (limits[2,1]-1imits[2,0]):
cdat = reference_rescale(cdat,limits,1l.5+«grain_sizexrescale)
limits = np.array([[np.amin(cdat[:,2]),np.amax(cdat[:,2])], [np.amin(cdat[:,3]),\
np.amax (cdat[:,3])], [np.amin(cdat[:,4]),np.amax (cdat[:,4]1)]1])

xis != 'none':

c_refs['axisr x'] = axis[0]
c_refs['axisr_y'] = axis|[1]
c_refs['axisr_z'] = axis[2]

haxis = axis

f.write('%1 %f %$f %f %f %f %$f %f %s\n' % (i, c_refs['c_x'][i]+*rescale, \
c_refs['c_y']l[i]*rescale, c_refs['c_z'][i]*rescale, c_refs['axisr_x"][i],\

c_refs['axisr_y'][1], c_refs['axisr_z'][1], c_refs['angler'][1i], \

["file']1[1]))

center([i, :]=[c_refs['c_x"][i]lxrescale,c_refs['c_y'][i]lxrescale,c_refs['c_z'][i]*xrescale]

c_refs

[trydat, seeddat]=seed_rotations (cdat, [c_refs['c_x'][i]l*rrescale,\
c_refs['c_y']l[i]l*rescale, \
c_refs['c_z'][i]+*rescale], \
1.5+rescale*grain_size/2,limits, haxis, \

c_refs['angler'][1])

f.write('%1 %f $f %f %f $f %$f %f %s\n' % (i, c_refs['c_x'][i]+*rescale, \
c_refs['c_y']l[i]l*rescale, \
c_refs['c_z'][i]*rescale, \

c_refs['axisr_x'][i], \

‘palWIuUN S| uonNqLIsIp ‘asesaJ d1jgnd Joy panoiddy

0¢

c_refs['axisr_y']1[1i], \
c_refs['axisr_z"][1i], \
c_refs['angler'][1], \
c_refs['file'][i]))
center([i, :]=[c_refs['c_x"][i]xrescale,c_refs['c_y'][i]lxrescale,c_refs['c_z'][i]*rrescale]
haxis = np.array([c_refs['axisr_x'][1i], c_refs['axisr_y'][i]l, c_refs['axisr_z'][i]])
[trydat, seeddat]=seed_rotations(cdat, [c_refs['c_x'][i]l*xrescale,\
c_refs['c_y']l[i]l*rescale, \
c_refs['c_z'][i]+*rescale], \

1.5xrescalexgrain_size/2,limits, haxis, \

c_refs['angler'][1])
seeddat = np.insert (seeddat,3,i,axis=1)
finaldat = np.concatenate((finaldat, seeddat))
linecache.clearcache ()
f.close()
return finaldat, center
= Main Body--——-———————-—
if reference_mode == 'single':
cdat = np.loadtxt('%$s' % (crref),skiprows=9,usecols=(0,1,2,3,4))
limsx = np.fromstring(linecache.getline('%s' % (crref),6),sep="' ")
limsy = np.fromstring(linecache.getline('%s' % (crref),7),sep=" ")
limsz = np.fromstring(linecache.getline('%s' % (crref),8),sep="' ")
lims = np.concatenate((limsx,limsy, limsz),axis=0) .reshape (3,2)

Ie

‘pajWI|UN SI uoiNgLsIp ‘@seajad 1gnd Joj panosddy

print lims

Check if the average grain size is larger than the box bounds

if 1.5%xavg_grain_size >= (lims[0,1]-1ims[0,0]) or 1.5xavg_grain_size >= (lims[1,1]-1ims[1,01])
or 1.5*xavg_grain_size >= (lims[2,1]-1ims[2,0]):
cdat = reference_rescale(cdat,lims,1l.5%avg_grain_size)
lims = np.array([[np.amin(cdat[:,2]),np.amax(cdat[:,2])]1,\
[np.amin(cdat[:,3]),np.amax (cdat[:,3]1)]1,\
[np.amin(cdat[:,4]),np.amax (cdat[:,4]1)11])
lims2 = np.fromstring(box_bounds, sep="', ") .reshape (3,2)
if avg_grain_size >= (1ims2[0,1]-1ims2[0,0]) or avg_grain_size >= (lims2[1,1]-1ims2[1,0]) \
or avg_grain_size >= (lims2[2,1]-1ims2[2,0]):

sys.exit ("grain size larger than defined simulation box, change box sizes")
print 'assigning grain centers'
center = grain_centroid(lims2,avg_grain_size)

finaldat = np.empty ([0,4])

a np.ones((len(cdat),1l)) .reshape(len(cdat), 1)

b = np.arange(l, len(cdat)+1l) .reshape(len(cdat), 1)

cdat = np.concatenate((b,a,cdat[:,2:5]),axis=1)

centout=np.empty ((len(center),8))

f=open('%$s_centroids.config' % (output_name), 'w'")

f.write('#data for centroids\n')

f.write('$f %f $f %f %f $f $f\n' % (avg_grain_size,1ims2[0,0],1ims2([0,1],1ims2[1,0],\
lims2([1,1]1,1ims2([2,0],1ims2[2,1]))

print 'populating atoms'

for i in range (0, len(center)):

print 'populating grain %$i' % (1)

\

[43

‘palWIuUN S| uonNqLIsIp ‘asesaJ d1jgnd Joy panoiddy

if direction == 'none':
axis = np.array([random.uniform(0,10), random.uniform(0,10),random.uniform(0,10)])
axnorm = np.linalg.norm(axis)
axis = axis/axnorm
angle = mt.radians (random.uniform(0,180))
else:
axis = direction
angle = random.uniform(0,180)

f.write('%1 %$f %f %f %f %f %f %f %$s\n' % (i,center[i,0],center[i,1l],center([i,2],axis[0],\

axis[1l],axis[2],angle,crref))

[trydat, seeddat] = seed_rotations (cdat,center[i,0:3],1.5«avg_grain_size/2,lims,axis,angle)
seeddat = np.insert (seeddat,3,1i,axis = 1)
finaldat = np.concatenate((finaldat, seeddat))

f.close ()

print 'finaldat=', len(finaldat)

print 'trimming excess atoms'
cut_atoms, check_centers = check_ownership(center,finaldat[:,0:4],1ims2)
print 'cut_atoms=', len(cut_atoms)

print 'wrapping periodic bounds'

fin_atoms = transpose_periodic_bounds (cut_atoms,lims2)

idcol = np.ones([len(cut_atoms),1l])

fin_atoms = np.concatenate((idcol,cut_atoms), axis = 1)

numcol = np.arange(l,len(fin_atoms)+1).reshape(len(fin_atoms), 1)
fin_atoms = np.concatenate ((numcol, fin_atoms), axis = 1)

output_atoms = np.column_stack ((fin_atoms[:,0],fin_atoms[:,5]+1,fin_atoms[:,2],\

€

‘pajWI|UN SI uoiNgLsIp ‘@seajad 1gnd Joj panosddy

fin_atoms([:,3],fin_atoms([:,4]))

print 'outputting to data file'

head = ("#data file for lammps\n%i atoms\n%s atom types\n%f $f xlo xhi\n%f %f ylo "\
"yvhi\n%f %f zlo zhi\n\nAtoms\n") % (len (output_atoms),len(center)+1,1ims2[0,0],\

1lims2([0,1],1ims2([1,0],1ims2[1,1],1ims2[2,0],1ims2[2,1])
np.savetxt ('data.%$s' % (output_name),output_atoms, fmt='%1i $i Sf $f S£')
f=open('data.%s' % (output_name),'r')
datal = f.read()

f.close()

g=open ('data.%s' % (output_name),'w')
g.write('%$s\n' % (head))
g.write('%$s' % (datal))
g.close ()
else:

print 'reading configuration data'

conf = np.fromstring(linecache.getline('%$s' % (ref_list),2),sep=' ")
avg_grain_size = conf[0]

lims = conf[l:].reshape(3,2)

lims2 = lims * rescale_factor

axis = direction

angle = mt.radians (random.uniform(0,180))
[finaldat, center] = multireference(ref_list,avg_grain_size,lims,rescale_factor,contwin, \
twinr, axis,angle)

if avg_grain_size*rescale_factor >= (1ims2[0,1]-1ims2[0,0]) \

143

‘palWIuUN S| uonNqLIsIp ‘asesaJ d1jgnd Joy panoiddy

or avg_grain_sizexrescale_factor >= (lims2[1,1]-1ims2[1,0]) \
or avg_grain_sizexrescale_factor >= (lims2[2,1]1-1ims2[2,0]):

sys.exit ("grain size larger than defined simulation box, change box sizes")

a = np.ones((len(finaldat), 1)) .reshape(len(finaldat),1)
b = np.arange(l,len(finaldat)+1l) .reshape(len(finaldat),1)
finaldat = np.concatenate((b,a, finaldat),axis=1)

print 'trimming excess atoms'

cut_atoms, check_centers = check_ownership(center,finaldat[:,2:6],1ims2)

©
1

np.ones ((len(cut_atoms), 1)) .reshape(len(cut_atoms), 1)
b = np.arange(l,len(cut_atoms)+1l) .reshape (len(cut_atoms),1)

cut_atoms = np.concatenate((b,a,cut_atoms),axis=1)

print 'wrapping periodic bounds'

fin_atoms = transpose_periodic_bounds (cut_atoms[:,2:5],1ims2)

idcol = np.ones([len(cut_atoms),1l])

fin_atoms = np.concatenate((idcol,cut_atoms), axis = 1)

numcol = np.arange(l,len(fin_atoms)+1).reshape(len(fin_atoms), 1)

fin_atoms = np.concatenate ((numcol, fin_atoms), axis = 1)

output_atoms = np.column_stack ((fin_atoms[:,0],fin_atoms[:,7]+1,fin_atoms[:,4],\

fin_atoms([:,5],fin_atoms([:,6]))

print 'outputting to data file'

head = ("#data file for lammps\n%i atoms\n%s atom types\n%f $f xlo xhi\n%f %f ylo "\

99

‘palWIuUN S| uonNqLIsIp ‘asesaJ d1jgnd Joy panoiddy

"vhi\n%

np.savetxt ('data.

f=open('data.%s'
datal = f.read()

f.close()

g=open ('data.%s'

[

g.write('%s\n' %

g.close ()

o\°

o\

o

o

$f zlo zhi\n\nAtoms\n") % (len(fin_atoms), (
1lims2([0,1],1ims2([1,0],1ims2[1,1],1ims2[2,0],1ims2[2,1])
£

[

s' % (output_name),output_atoms, fmt='%i

(output_name), 'r'")

(output_name), 'w')

(head))

g.write('%$s' % (datal))

len(center)+1,1ims2[0,0],\

o1 o
sl ©

S %L

(PDF)

(PDF)

(PDF)

(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

US ARMY RESEARCH LAB
RDRL CIO L
IMAL HRA MAIL & RECORDS MGMT

GOVT PRINTG OFC
A MALHOTRA

DIR USARL

RDRL WMM F
M TSCHOPP
S COLEMAN

Approved for public release; distribution is unlimited.

36

	List of Figures
	Acknowledgments
	Introduction
	Background
	Voronoi Tessellation
	Nearest-Neighbor Analysis

	Methodology
	Required Software
	Single Mode (Generating from a LAMMPS Dump File)
	Wrapping Periodic Bounds
	Optimized Packing of Grain Centers
	Generating and Scaling Reference Files
	Populating Atoms

	Config Mode: Generating from a Configuration File
	Reading Grain Information
	Repopulating Atoms

	Usage
	Invoking the User Interface
	Output

	Examples
	Extensibility
	Single Mode
	Config Mode

	Conclusions
	References
	Appendix. Python Script: nanocrystal_builder.py FunctionThis appendix appears in its original form, without editorial change.0
	Distribution List

